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We have repeated the simulations of Henkel, Paessens, and Pleimling �HPP� �Phys. Rev. E 69, 056109
�2004�� for the field-cooled susceptibility �FC�t�−�0� t−A in the quench of ferromagnetic systems to and below
TC. We show that, contrary to the statement made by HPP, the exponent A coincides with the exponent a of the
linear response function R�t ,s��s−�1+a�fR�t /s�. We point out what are the assumptions in the argument of HPP
that lead them to the conclusion A�a.

DOI: 10.1103/PhysRevE.72.028103 PACS number�s�: 64.60.Ht, 05.70.Ln, 75.40.Gb, 05.40.�a

In a recent paper �1� Henkel, Paessens, and Pleimling
�HPP� have addressed the question of the relationship be-
tween the scalings of the linear response function and the
zero-field-cooled �ZFC� susceptibility in ferromagnetic spin
systems undergoing aging after a quench to or below TC.
This problem �limited to the quenches below TC� had been
previously analyzed by us in a series of papers �2–5� with the
following conclusions.

�1� The linear response function

R�t,s� = �����t��
�h�s�

�
h=0

, t � s �1�

scales as

R�t,s� � s−�1+a�fR�t/s� �2�

with

a =
n

z
	 d − dL

dU − dL

 , �3�

where z is the dynamical exponent entering the growth law
L�t�� t1/z of the average defect distance, dL is the lower criti-
cal dimensionality, and �n=1,dU=3� and �n=2,dU=4� for
scalar or vector order parameter, respectively.

�2� The ZFC susceptibility �ZFC�t ,s�=�s
tds�R�t ,s�� scales

as

�ZFC�t,s� � s−Af��t/s� �4�

with

A = �a for d � dU

n/z with log-corrections for d = dU

n/z for d � dU.
 �5�

The cases considered by HPP in �1� correspond to d�dU,
where the above result gives A=a �6�. Instead, HPP reach the
different conclusion A�a, thereafter stating that A is a new
exponent unrelated to a and to aging behavior. The purpose

of the present Comment is to show that the data for the same
quench considered in the HPP paper, if properly interpreted,
are in agreement with our finding A=a, where a is given by
Eq. �3�.

Following HPP, next to the ZFC susceptibility we intro-
duce the field cooled �FC� susceptibility �FC�t�=�0

t dsR�t ,s�
and the thermoremanent �TRM� susceptibility �TRM�t ,s�
=�0

sds�R�t ,s��. Obviously, the three integrated response
functions satisfy the sum rule

�FC�t� = �ZFC�t,s� + �TRM�t,s� . �6�

The HHP argument is built on the behavior of the FC sus-
ceptibility. From numerical computations they find

�FC�t� = �0 + 	t−A �7�

where 	 is some constant. Making the distinction between
systems of class S, with a finite equilibrium correlation
length 
, and systems of class L, with 
=�, for �0 they make
the statement

�0 = ��1 − meq
2 �/T for systems of class S

0 for systems of class L,
� �8�

where meq is the equilibrium magnetization at the tempera-
ture T. Then, assuming that the TRM susceptibility obeys the
asymptotic behavior

�TRM�t,s� = s−afM�t/s� �9�

from Eq. �6� follows

�ZFC�t,s� = �0 + 	t−A − s−afM�t/s� , �10�

where for the exponent a they take

a = �1/z for class S

�d − 2 + ��/z for class L.
� �11�

Let us now look separately to the different cases.
1. Class S: 2d Ising model quenched below TC.
As an example of class S, HPP consider the d=2 Ising

model with Glauber dynamics quenched below TC. Measur-
ing the FC susceptibilty they find that Eq. �7� holds with �0
given by the top line of Eq. �8� and with A=1/4. Then,
assuming that a is given by Eq. �11�, that is by a=1/z
=1/2, they make the statement A�a. According to them, A
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does not have any relationship to aging and it is due to the
roughness of the interfaces, while a is a subleading exponent.

Repeating the simulation of HPP with the same quench
temperature T=1.5, we have reproduced their data for the FC
susceptibility, However, rather than making an assumption
on the value of a, we have looked for an unbiased compari-
son of A and a, born out of the same set of data. This can be
accomplished by analyzing the ZFC susceptibility according
to Eq. �10�. In Fig. 1 we have plotted s1/4��ZFC�t ,s�−�0� as a
function of x= t /s for different values of s ranging from 1000
to 3000. The excellent data collapse in Fig. 1 has two pos-
sible origins: either A�a and in the range of s considered
the third term in the right-hand side of Eq. �10� is negligible,
or a=A. In order to discriminate between these two possi-
bilities it is enough to replot the same set of data as a func-
tion of t for fixed s. If the first alternative is the right one the
data should collapse also in this plot, while in the second
case there could be no collapse, due to the existence of the s
dependence. Figure 2 shows that indeed the latter one is the
case, that the s dependence is a large effect and that, there-
fore, a=A=1/4.

Although the pair of Figs. 1 and 2 is certainly enough to
settle the issue, in order to help visualize the result we have
also produced �Fig. 3� the log-log plot of �ZFC�t ,s�−�0 as a
function of s, for fixed x. The data in Fig. 3 display an ex-

cellent fit with a single power law, with a slope very close to
−1/4 for every value of x, which makes clear at a glance the
conclusion a=A=1/4 reached above and in agreement with
Eqs. �3� and �5�.

In summary, this means �i� that a is not subleading as
believed by HPP and �ii� that roughening of the interfaces,
rather than being unrelated to aging, is precisely the mecha-
nism that renders the exponent a smaller �for d�dU� than
1/z, as explained in Ref. �5�. What goes wrong in the HPP
interpretation of the data in �1� is the assumption that, for
systems of class S, a is given by the top line of Eq. �11� �7�.

2. Class L: 3d spherical model quenched to and below TC.
As an example of class L, HPP consider the spherical

model quenched to and below TC. They compute numerically
�FC�t� in both cases, with d=3, finding that it saturates to a
constant for large t. However, they do not identify this con-
stant with �0, since they make the statement �8� that �0=0
for systems of class L. This is supported by a hand waving
argument according to which �0 ought to vanish, since the
correlated clusters for systems of class L should have no
“inside.” Although vague, this assumption is crucial because
it is the starting point of the chain of implications used by
HPP: the saturation of �FC�t� to a constant value and �0=0
imply A=0, which in turn implies A�a, since in the spheri-
cal model a= �d−2� /2, both in the quench to and below TC.

Before going further, it is necessary to clarify the physical
meaning of the constant �0 appearing in Eq. �7�. This can be
readily understood recalling that

lim
t→�

�FC�t� = �eq = �1 − meq
2 �/T , �12�

where �eq is the static susceptibility. Since the second equal-
ity in the above equation is nothing but the static fluctuation-
dissipation theorem, it holds for all systems, be they of class
S or class L, quenched below TC or to TC. Therefore from
Eqs. �7� and �12�, we can identify �0=�eq and Eq. �8� must
be replaced by

FIG. 1. Data collapse of s1/4��ZFC�t ,s�−�0� vs x.

FIG. 2. �ZFC�t ,s�−�0 plotted against t.

FIG. 3. �ZFC�t ,s�−�0 plotted against s for different fixed values
of x. Straight lines are the best fits �with exponents 0.24, 0.25, 0.25,
0.27, 0.27 from top to bottom�.
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�0 = �1 − meq
2 �/T �13�

both for systems of class S and class L, which clearly re-
duces to �0=1/TC for the quenches to TC. Therefore �0=0
assumed by HPP is excluded in all cases.

Furthermore, in the case of the spherical model there is no
room for assumptions, since the model is exactly soluble.
Using the formulas that HPP give in �1�, it is not difficult to
derive analytically the large t behavior of the FC susceptibil-
ity obtaining

�FC�t� = �1 − meq
2 �/T + 	t−�d−2�/2 �14�

with meq
2 =1−T /TC, 	= ��1−d /2��1+� /2�� /(2− �d

−��/2) where  is the gamma function, �=d /2−2 in the
quench to TC and �=−d /2 in the quench below TC. There-
fore, comparing with Eq. �7�, we have �0=�eq= �1−meq

2 � /T
�8�, as expected from Eq. �13�. This implies A=a= �d−2� /2
for T�TC, in agreement with Eqs. �3� and �5�.

3. Class L: 2d Ising model quenched to TC.
As an additional instance of a system of class L, HPP

consider the 2d Ising model quenched to TC. Again, they find
that the FC susceptibility saturates to a constant. By the same
reasoning as in the previous case, from the assumption that
�0 ought to vanish they make to descend A=0�a= �d−2
+�� /zc=0.115, where we have used zc=2.167 �9� and the
exact result �=1/4.

Although the argument of Eq. �12� ought to suffice, we
have repeated their simulations and we have plotted �Fig. 4�
log10(�0−�FC�t�) against log10 t, with �0=1/TC. The figure
shows a very clean power law decay with A=0.115±0.005,
which compares very well with the value of a given above

and yields, again, A=a. Furthermore, the observation of the
decay with the correct value of the exponent implies that also
the subtraction by �0=1/TC is the correct one.

In summary, the unbiased analysis of the data for the FC
susceptibility in all cases considered by HPP, that is in sys-
tems of class S and class L with d�dU, yields A=a in agree-
ment with Eqs. �3� and �5�. The biases in the HPP analysis,
which lead to the wrong conclusion A�a, are in the two
assumptions �i� a=1/z for systems of class S and �ii� �0=0
for systems of class L.
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�7� Here, one might wonder what is the justification for using the
asymptotic form �9� in Eq. �10�, when the TRM susceptibility
is known �4� to be affected by a very long crossover. Using the
HPP notation, let us rewrite �TRM�t ,s� as the sum of the two
contributions

�TRM�t,s� = s−afM�t/s� + s−�R/zgM�t/s� ,

where s−�R/zgM�t /s�=r1t−�R/z=�0
t�ds�R�t ,s��, and t� is the char-

acteristic time for the onset of scaling. The second contribution

on the right-hand side, with �R /z�a, is the correction to scal-
ing responsible for the crossover. However, from Eq. �6�
�ZFC�t ,s�=�FC�t�−�TRM�t ,s�, it is evident that this term is
canceled by the identical contribution in �FC�t� and, there-
fore, Eq. �10� holds also in the range of s reached in the
simulations. Obviously, such a cancellation does not operate
if the TRM susceptibility is observed alone. In that case, the
second term in the displayed equation in this reference must
be properly taken into account. This brings us to the ques-
tion of the value of a, since HPP in �1� claim to have ob-
tained a=1/2 by fitting the data for the TRM susceptibility
in the d=2 Ising model. However, in order to obtain a good
agreement with numerical data, they are forced to take a
negative value r1=−1.84 for the parameter r1, while, by
definition, r1= t�R/z�0

t�ds�R�t ,s�� is a positive quantity. There-
fore the estimation of a=1/2 from TRM data is based on a
nonphysical fit procedure.

�8� Notice that, in the particular case of the spherical model, this
gives �0=1/TC for T�TC, since thermal fluctuations are criti-
cal for all T�TC.
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FIG. 4. The field cooled susceptibility �FC�t�−�0 vs t for the 2D
Ising model at T=Tc�2.269. The straight line is the expected be-
havior �FC�t�−�0� t�/zc with �=1/4 and zc=2.167.
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